DETERMINATION OF THE MOLECULAR-VELOCITY
DISTRIBUTION FUNCTION IN A MOLECULAR BEAM
BY THE METHOD OF MECHANICAL SELECTION
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Results are presented for the solution of the problem, which is incorrectly formulated ac-

cording to A. N. Tikhonov, of the establishment of the molecular-velocity distribution func-
tion in a molecular beam based on experimental values of the intensity. If is indicated that
the distribution fanction obtained has a non-Maxwellian character.

One of the methods of determining the velocity distribution function f£(v) in a free-molecule flow is the
method of mechanical selection [1-3]. A system for determining the function f(v) by the indicated method
consists of a mechanical selector and a detector. The mechanical selector, located in the molecular beam
and rotating with velocity w, passes only those molecules of the beam having velocity in a certain range
[vg(w)—A(w), vy (w) + Aylw)], the so~called pass band of the selector. The detector, which is behind the
selector, records the molecules that pass through it.

A simple mechanical selector, which has a number of advantages compared to selectors used earlier,
is described in [4]. In the present paper we describe the method of processing the experimental data ob~
tained using such a selector.

We assume that all the molecules that move toward the slit in front of the selector of the collimator
move parallel to its axis. Then the distribution function f(v), determined by the method of mechanical
selection, is found from the equation

votAy

H (vo, v) vf (v) dv = J (vo) t.1)

oAy

Here f(v) dv is the number of molecules per unit volume having velocity in the interval [v, v + dvl;
J(vy) is the recorded intensity of molecules having velocity from the interval [vy—Aq, vg + Ayl; H vy, v) is the
selector transmissivity, equal to the ratio of intensity of molecules of the beam with velocity from the in-
terval [v, v + dv] at the exit of the selector to their intensity at the entrance to it (outside the interval [vy—
Ag, v+ Ayl the function H(vg, v) = 0).

For a system that consists of a plane reversible selector and a detecting device, described in [4] and
{51, respectively, the function H(vy, v) has the form

H (v,, V) = 1K (v, V)

Here n is the capture coefficient, equal to the ratio of the intensity of molecules that enter the selec-
tor to the intensity of the free-molecule flow in front of the selector (for the flow intensity we take the in-
tensity recorded by the detector in the absence of the selector), and K(v,, v) is the transmission function of
the selector, equal to the ratio of the intensity of molecules having velocities v from [v, v + dv], passing
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through the selector, to the intensity of molecules

b
‘ s 4 £ il 2 . entering the selector (outside the interval [vy + Ay,
1T !
ZTT\\ g £) &6 4 b Z v + Ayl the function K{vg, v) = 0).
a w ; # ) V/
! | /?y/[ J\ : P 4/ / /a1 1 A * The transmission function of a plane reversi-
\4/\ ! ; \ N | g ble selector practically agrees with the transmis-
£, - <l— sion function of a single-ring two-slot selector [4].
I Such a selector, schematically presented in

Fig. la, consists of a thin ring 1 of radius R with
Fig. 1 entrance slot 2 and exit slot 3 of width h. The glot
of the collimator of the free-molecule flow 4 and
the slot of the detector partition 5, the centers of which together with the center of the ring O lie on the
same axis 0;0,, are presented there. The ring rotates with angular velocity w. The axis of rotation of the
ring 1 is perpendicular to the 040, axis, and the length of the twist arc of the selector equals s.

It is convenient to consider the interaction of such a selector with a flow for h « R, using the diagram
represented in Fig. 1b. Two thin straight strips, which are represented in this figure by the straight lines
EyE, and F;F, perpendicular to the 0;0, axis, move in opposite directions with velocity wR. The distance
between the strips equals 2R; the width h of the entrance slot 2 and exit slot 3 at the strips EyE, and Fy Fy
equals the width of the slot of the collimator 4 and the partition 5. The distance from the center of the exit
slot 3 up to the 040, axis at the moment at which the center of the entrance slot 2 lies on this axis equals
s. The flow boundary between the collimator and the partition is represented by the straight lines G;G; and
Hi{H,.

Since, by assumption, all the molecules that pass into the collimator slit move parallel to the G;0,
axis, when the slit 2 passes the slit 4 the selector admits only those molecules having velocities in the
range [v, v+ dv], which occur within the parallelogram ABCD, whose sides AD and BC lie on the flow
boundaries and equal vh/wR, and whose height is the diagonal BD. The parallelogram ABCD moves as a
whole with velocity v along the 0,0, axis.

In Fig. 1b the dotted line plots the trace of the exit slot 3 on a plane that is rigidly coupled with the
parallelogram ABCD. It is clear that through the selector there pass molecules which occur in the hatched
portion of the parallelogram ABCD, lying on the trace of the exit slot 3.

The transmission function of the selector K(v,, v} equals the ratio of the hatched area S'to the total
area S of the parallelogram ABCD (S = h%/wR). To calculate S' we note that it is the common part of the
parallelograms ABCD and AyB{CyD;, which is obtained for the intersection of the trace of the slit 3 with the
boundaries of the flow G;G, and H{H, and is the mirror image of ABCD with respect to the LI, axis. If
the distance MM; between the centers of these parallelograms is denoted by x, then, as can be easily shown,
the area S'is determined from the expression

Jh (2a — x)%*4a, ae<L <L 2a 1.2)
(202 — 2)/bha, —a<<Lz<La ‘
th (22 + 2)%4a, —2a<z<L —a

a = AD = A,D, = hwl/oR

§ =

The distance x is determined from the equation
z = 2R — svl off @.3)

We shall call the velocity vy for which S'is a maximum (x = 0) the principal velocity of the molecules
passed by the selector rotating with angular velocity w:

vy = 2R*0/s a.4)

Such an expression was obtained in [4] for molecules passed by a selector on which the quantity h—0.

Using (1.2)-(1.4), we obtain an expression for the transmission function

(1 + 2e — y)?/ 4e?, {1 +e<Cy<<t 4+ 2¢
K@) =1 (2 —1+2—y)/be? 1—e<y<l-te 1-5)
(1 — 28 — y)? ) 4e?, 1 —2e<Cy<<i—¢
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17 Here y = vy/v, and € = h/s «1. When the change in £(v) in

#/fmaz the range of the pass band is small, the velocity distribution in
the flow in front of the selector can be determined directly from
the measurement results. Actually, from (1.5) and {1.1) we obtain

/ 1+2¢ K ) }
05 o) =mwef @0) | L dy = it on) 9 (e)
p 152
j J _ Hence
I ! (1 4+ 28) (1 —g)®
Y ; 72 [0 =y ©®) =7z T (1.6)
Fig. 2

When it is impossible to neglect the change in f(v) on the
pass band (which is typical for high-velocity molecular beams),
. . ~ we must solve the integral equation (1.1) with kernel (1.5). This
WWmbec) MR T(m/fec) initial equation of selection is a particular case of an integral
/ equation of the first kind, the problem of obtaining the solution of
which is incorrectly formulated in the general case. Many works
(see, e.g., [6-10]) are devoted to methods of solving such problems,
which are sometimes called inverse problems.

5.7

Ly

. In the present study, in order to solve the integral equation

15 we use the method of regularization, proposed in [6]. According
L» ; to this method the family of approximate solutions f*(v), con-
/ | verging for o —0 to the solution (1.1) if the right side of J(vy) is
f—" ) givenexactly,are extremals of the functional
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MeIf, J] = N1Tf, J1 + «Q [f]
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Fg: 3 Nif N = {0 § Koo @ydo— w0}

oo

= (8] + 7]

Solution (1.1) is assumed to be unique.

For the numerical solution of this variational problem we use a correspondingly modified method of
local variations [11], and for the choice of the solution based on the parameter o we use the method of [9].

As J(vg). we use the given intensities obtained on an MP apparatus, described in [5], for forechamber
pressure 155 torr. As the molecular-beam source we use an argon jet, flowing from a sonic nozzle of
radius 0.1 mm. The gas in the forechamber is at room temperature (293°K). The distance from the skim-
mer of the first aperture up to a section of the nozzle for which the interaction with the skimmer did not
perturb the velocity distribution functions was selected based on the method proposed in [12}. The param-
eters of the selector were such that ¢ = 0.031.

The distribution function obtained, normalized to the maximum value,is shown in Fig. 2 (curve 1);
along the axis of abscissas we plot a quantity equal to the ratio of the velocity to V2ZRT. Figure 3 illustrates
the buildup velocity according to a of the moments of the distribution function of the mean velocity u and
the root-mean-square deviation (dispersion) 2RT.

From the theorems proved in {6], in particular, it follows that to obtain fe(v) differing from solution
(1.1) by no more than &' the function J(vg) must be given with corresponding accuracy, and, inversely, the
specifying of J(vo) with a certain accuracy does not enable us, for decreasing «, to obtain f4(v) differing
from the solution (1.1) by less than g;. It is thus natural to expect that the accuracy of the solution obtained
will be worse than the accuracy of the experimental data. And although the exact dependence between them
is not obtained, in trial calculations [13, 9] the accuracy of the solution is approximately 1.5-2 times worse
than the accuracy of the initial data.

A widely used method of obtaining the distribution function is the method of searching for the solution
of Eq. (1.1) in a definite class of functions with one or several unknown parameters [14, 15]. These
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parameters are chosen so that the left side of (1.1) in a certain sense differs little from the measured value
of J{vy). As is indicated in [10], this method makes sense if and only if the solution of the equation actually
belongs to this class.

In studies on the determination of the distribution function in high-velocity molecular beams it is
usual to assume that

fu (V) ~ v exp [— (v — u)?/ 2RT]
Here n, u, and T are parameters.

Since the direct solution of Eq. (1.1) gives the possibility of finding the distribution function f(v) and,
hence, also its moments u and 2RT, we can, using the latter, examine how close the functions fn(v) approx—
imate the numerical solution of the equation of selection. The functions £ (v), normalized to the maximum
value, forn =0 and n =1 are given in Fig. 2 (curves 2 and 3). A comparison shows that the molecular-
velocity distribution function in the molecular beam is not Maxwellian.
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